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THE GENERALIZATION OF A CI RCULAR BOUNDARY CONDITION IN 
TH[ PROGRAM POISSON TO INCLUDE NO SYMMETRY AND 

AXIS-SYMMETRY OF REVOLUTION~ 

S. Caspi, M. Helm, and L.J. Laslett 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, Ca lifornia 94720 

We have previously reported on the incorporation of a circular boundary 

condition into the program POISSON for two-dimensional problems ( "Incorpora-

tion of a Circular Boundary Condition i nto the Program POISSON", S. Caspi, 

M. Helm, and L.J. Laslett, LBID-887, SSC MAG Note-S, February 13, 1984). 

The least square method has now been generalized to accept any suitable set 

of orthogonal func!i ons wh i ch can describe the vector potentia I function 

outside a circular boundary so l ocated that no external sources are pre-

sent. We have proceeded to incorporate the boundary condition into carte-

sian prob I ems· wh i ch i nvo I ve no syrrrnetry, and into ax i s-synmetry cy I i ndric a I 

prob I ems that may have I ef t-ri ght syrrmetry, anti sYlTJ1letry or no symmetry. 

" This worx was supported by the Director, Office. of Energy Research, Office 
of High Energy and Nuclear Physics, High Energy Physics Division, U.S. 
Dept. of Energy, under Contract No . DE-AC03-76SF00098. 



An a 1 ys i s 

Consider the case where a cir-

cul ar arc of radius r' = R - H di-

vides space i.nto two regions (Fi g. 1) , 

an inner one' which includes all cur-

rent sources and magnet ic iron, and 

an outer one wh i ch 1 s in free space 

(hereafter referred to as the "uni-

verse"). Since the free space region 

is infinite we shall arbitrarily li-
sourca: + inm. 

mit it by a secondary circular arc 

of r~dius r _ R. Both circular arcs 

are an assembly of connecting mesh Fi g. 1 

points such as the one generated by the program LATTICE.. If we know the 

vector potential for' each meSh point on r =, R - H (e.g. calculated by 

POISSON), we would like to find the vector potential at each mesh point on 

r = R, so that such values may be employed as provisional bounaary values in 

a subsequent relaxation pass through the .entire mesh. This is expressed as: 

N 
Aouter' 

k =:L E
kn 

A~ nner ( 1 ) 

n=l 

A is the vector potenti a 1 and E. is a working matrix, and the surrmati on 

is over the entire· mesh points of the inner arc. 

In the free space region the vector potential can be expressed as a sum 

of harmonic terms, each employing powers of l/r. 



(2 ) 

The vector potential A of mesh point i on the circular arc r ' is ex-

pressed in tenns of a series of functions FR. (e), their' coefficients DR. and 

the problem type symmetry aR.' 

Summing over the N boundary points on the radius r, the difference be-

tween the calculated vector potential values and the relaxl:d ones is mini-

mi zed wi th respect to DR. ' 

Min: 1/2 
N 
L, 

i=l 
(e.) _ A.)2 

1 1 
(3) 

The number of hannanic tenns has been reduced to m and the weight factors 

10/; have. been i ntroduced to take care of an uneven distribution of mesh 

points along ' the boundary, 

Following the minimization process we arrive at: 

m' -<It 
I: M .. OJ r 3 . V. 

1 J 1 
( 4) 

j-1 

N 

where: Mj j = L: w F. (9-
n

) Fj (e ) 
n=1 

n 1 n 

i, j = 1, 2, 3 '" m 
N 

Vi =' I: w F. (9-
n

) A 
n-1 n 1 n 

Solving f or OJ on the inner arc' r=R -H we- get 

m a· 
(M-

1
) j i V; nner 

OJ = L (R-H) J 
i=l 

1 
( 5 ) 

, 



Using Eq. (2) on the outer arc r = R and substituting the expressions 

for OJ and Vi we arrive at 

Aouter = t ( R _ H )<lj 
k j=l R 

N 

(M-1) .. 2:. 
J 1 n=l 

VI F.(e-) Ainner 
n 1 n n 

Employing the working matrix Ekn' rel ation (6) is rewritten as: 

where 

N 

A~uter = L: E
kn 

A~nner 
n_l 

Two Dimensional Case with Plane-Polar Coordinates 

( 6) 

(7 ) 

The harmonic functions F i (s) are a combinati on of the trigonometric. 

functions SIN and COS. It is, however; convenient to express them i n the 

following way 

The explicit functions· are listed in the table· below. 



1 

2 

3 

4 

5 

6 

7 

2, -1 

2, 

Examples 

a 

0 

L 

1 

2 

Z. 

3 

3 

Regular dipole: 

6,!. F2, (9) 

0 Fl 

1 F2 

0 F3 

1 F4 

II F5 

1 F6 

0 F7 

Function 

1 a2, 

sin 9-

cos 9-
62, 

sin 29 

cos 29 

sin 39-

cos 39 

sin (a2.-1 9) 

cos (a2, 9) 

-
9. 
Z integer division 

2, £-1 _ 
=-"2 - 2 1nteger 

division 

The terms used to describe the vector- potenti al of a re-

gu_lar- dipole- are: 

2, - 3, 7 , 11 , .••.•• 4k -1; k =. 1, 2, 3, 4 ... 

4k-l - t - - -a2, =-z.-ln egera1v1s10n -- ak = 2k - 1 

4k-l 4k-2_ 
62, ~-2_---z.-1nteger division ~ 6k =0 

Regular- quadrupole: 2, ~ 5, 13, 21, ...• •• Bk-3; k ~ 1, 2, 3, 4 ..... 

Bk-3 - d - - - 4k 2 a2, = - 2- 1 nteger- 1V1 S10n -+ ak = -

Bk-3 Bk-4_ 
62, = - 2---2- 1nteger division --+- Sk = 0 



Midplane symmetry : t = 1, 3, 5, . .... 2k-1; k = 1, 2, 3, 4 

2k-1 . 
(1t = z-,nteger divi s ion --+- (1k = k - 1 

2k-1 2k-2 . 0 
81. =Z--z- l nteger division -r Bk = 

No-synrnetry : t = 1, 2, 3, 4, ..... k 

(12. = ~ integer division -r (lk =. k - 1 

k = 1, 3, 5 

k = 2, 4, 6 

~ays of generating the (1k have been outlined in report LBID-847 ( "The 

Vector Potential of Multiple Current Lines", S . Caspi, SSC-MAG-9, Febru-

ary 27, 1984) and are summarized in the table below. 

Type 

regular dipole 

regular' quadrupole 

regu 1 ar' sextupo 1 e 

etc. 

2 in 1 di po 1 e 

~ in 1 quadrupole 

etc.. 

, 2 in 1 dipole· 
, 
: 2. i n 1. quadrupo 1 e 
, 
I . 
, 
i 

etc.. 

; midplane 

I 
1 
i 
i no symmetry 
I 

p 

1 

2 

3 

p 

with current 
synrnetry 

with current 
antisynrnetry 

2k-1 

4k-2 

6k-3 

2pk-il 

2k-O 

2k-1 

k-1 

k-1 

i 
i 
i 

I 
I 
I 
I 

8 

o 

o 

o 

o 

o 

0 

0 

CON 126 

21 

42 

63 

2p.10+p 

20 

2L 

11 and 

I r ,. t, l, 5 
1 k = 2, 4, 6 I CON 126 = 11 
CON 46 = 1 

CON 46 
, 

1 or 

, 



Figures 2, 3, ~nd 4 are flux line plots which demonstrate the met"hod 
introduced here for the use of bounoary conditions. All cases are 
for Cartesi an problems. 

( a ) 

(c ) 

Boundary at R 3 . 16. a 
Source at 45' 

Nb symmetry in current source. 

(b) 

(d) 

Boundary at R ~ 8.0 
Source at. 45' 

Nb symmetry in current 
flow. 

Fig. 2 Flux lines are plotted for cases where·. the use of no­
symmetry in the boundary condition has been appl ied. 
(CON 46 = 1, ak = 11) • 
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Fig. 4 Flux lines leaking from the iron to the "universe" are plotted for 
(a) 2-in-l quadrupole a, = 2k - 1; (b) SSC 2-in-l dipole with even 
current loading,a

t 
= 2k ~ 0; (e) sse 2-in-l dipole with uneven load-

ing a k = k - 1. Case a and b were solved in a single quadrant, 
case c, so 1 ved mi dp 1 ane. 

, 



Axis-Symmetry Problems with Polar Coordinates 

Here we consider cases which obey symmetry with respect to revolution 

around the Z axis. The component A<j> of a vector potential A = A (r, ~) e¢ 

in a spherical coordinate system may employ terms of the form 

rn P 1 (u) and 
n 

1 P 1 (u) 
n 

in addition, in princ.iple, to terms of the form~'" b 
r 

pI (u) are the associated Legendre functions. 
n 

(See for example "Mathematical Methods for Physicists", G. Arfken, 

pp. 558-567). 

Here r = (p2 +- l)I/2, p =. r sine, z =- r " cass, and u = cos " wi th " 

denoting the angle from the pole (co-latitude). 

-"--~--+--¢;--;p V Z. 

In a region (r > R) devoid of externa 1 sources we may expect that A¢ 

can be represented exclusively in terms of the form' 

1 1 
-i"'::+"l-Pt (cos~) 
r 

[2.=1,2, ... ] 



We proceed to somewhat normalize the associated Legendre function. This can 

sometimes improve the inversion of Mij and express the vector potential in 

the fo llowi ng form 

A~(r, 90) : . L r-(.2.+1)0· ~ (cos e) = (' P1 ) 
~ b1 .2. .2. 

(8 ) 

We recognize the fact that our normalization factor .2. is different from the 

conventional one 

In acyl i ndri cal geometry the flux 1 i nes are represented by the product" 

p.A~ where A~ is the vector potential. The program POISSON is written 

in such a way that this product is the· one which is being relaxed. We 

therefore proceed and redefine: 

Equation 8 is now written as: 

~ '" ( si n 
e. P l. 100, .J ) - .2. .2. 

AIj : . ;: r 0.2. 

.2.=1 
.2. 

( 9 ) 

We define: 

sin e· P 1 (cos e-) 

F.2. a 

".2. 
-1 < co s 1 ".2. ~ .e.. &-< 

".2. 

Such Legendre associated functions may serve· to describe a magnetic vector­

potential function in certain cases of cylindrical sYllVlletry. We write down 

the explicit form of F.e. in the following table: 



£. " F 

1 1 Fl 

~ 2 F2 

3 3 F3 

£. 

Function 

sin 9 Pl1(COS 9) 

sin 9 · P21(COS 9) 

2 

sin 9 P31(COS 9) 

3 

sin 9 pI (cos 9) 
£. 

Symmetry with respect to equatorial plane: £. = 1, 3, 5 .. 2k-l ; k = 1, 2, 3 .•• 

We note that if A~ is even about &. = tt/2 (current syrrmetry), only odd va­

lues of i are required. 

all = 9.. + 1 -1- "k 2 2k - 1 k 2 1,. 2, 3 .•. 

(a) a ... = 2k - 1 k=1,2,3 ... 



Antisymmetry with respect to eauatorial plane: 2. = 2, 4, 6... 2k ; k = 1, 2, 3 '" 

If A¢ is odd about G = w/2 (c urrent anti symmetry), only even values of 2. 

are requ ired. 

(b) 

(l = 2. -7 (l = 2k 
2. k 

(l = 2k 
k 

No symmetry: 2. ~ 1, 2, ••• k -+- (lk =' k 

»'\\ \/ " 
~ \' \\ ' : I i ' , 

: ~r \'>:,Y\ \ '\ \ 'j' 1/ {I //'i 
' ' : , \ " I! / , Ll <£~lf/ 

'~":" ' :"b "{;;\' // / "~~:';:; ~~~/ 
'::=::" -'~",- -. • • '- - --

~ ';)o'~ 

(c) (l = k 
k 

, 



>Ie surrmarize the results for POISSON in the fol lowing table (CON 126 is 

one of the POISSON constants). 

Type Q CON 126 CON 46 
CON 19m1) 

Symmetry 2k-1 21 { 1 fa. 2. quadrants 

Anti syrrmetry 2k 20 2 for 1 qua nor ant 

No-Syrrmetry \( 10 or· midplane 

Recursion Relation 

The computations of the· Legendre functions are based on the recursion 

relation 

Fa. those cases which require only odd or ~ terms we have a relatea recursion 

re 1 ati on that re 1 ates Legendre functi ons whose cregrees (subscri pts) d Hfer by 

two units (rather- than by ~ unit, as above). 

We- have prepared a subroutine- SAliN (together wi th an attached progr-am A!>SOL, 

for testing this subroutine) intenaed to provide values of 

F • 
i 

14 



Mere en Symmetries 

In the ceurse ef develeping seme general rules fer the values ef the 

hannenic terms elk we realized that in seme cases the leading term in the 

vecter petential series decays radially with a high pewer. (Again, we are 

enly cencerned with the petential in the regien eutside all seurces). These 

cases invelve preblems with a large number ef peles and a geometry that ebey 

i nterna 1 symmetry. The pregram PO ISSON, wri tten to. accammed ate the present 

type ef beundary conditien, assumes however that pseuae tenns de exist priar 

to. the leading tenn and should drop out as the_ problem cantinues to. rel ax. 

Since this type- ef problem presently is of enly academic interest, we have-

included such tenns here withaut addressing them in the POISSON cade itself. 

We use the mathematical argument that the derivative ef ene multipale 

leads to. the next higher multipele (e.g. in twa dimensianal space dipales 

are secand r~nk tensars). 

Cartesian Caardinates 

Far this example we chaase to. expand the vecter petenti al Az. in the x 

direction enly (A is "syTTIlletrical" in the sense that only COS tenns are z 
emp layed) 

A -z 

.A 
---L = (Co.s ax 

.A z 
ax =-

.2 Az 

• x 2. 
- -

1 

Clk ces [(Cl
k 

+- 1)9] Cl +- I 
r k 

ClI«ClI<+l) 
cos [(al< +- 2)9] etc . Cl ... 2 

k 
r 



If we apply the rule to a single dipole a k = 2k - 1 we get 

t 
I 
~-

r 

antisynmetry 

1 zk 1 COS [(2k-l)e] 

1 - cos e, .•. r 

I 

-1±I-t--G-+-~8+8-

synmetry 

1 2k cos (2ke) 
r 

1 
Z cos 2e, .•. 
r 

t I ~ • t 
-[!I 1±I~-+--EI-8-+--l8-ill-

anti syrnnetry 

1 
r2k+I cos [(2k+l)e] 

1 
- cos 39, ... 
r3 

Finite-difference illustrations only 

We note that the leading term in case (c) decays with the tnirD power where-

as the- one in case- (a) decays with the first one. However running case (c) 

on POISSON the- first tenrr would have been of the same orDer as in case (a) 

assuming, though, that as the problem continues to relax the coefficient_ for 

(l/r) will continue to decline letting the term (1/r3) become dominant. 

The- same proces s wi 11 be true- runn i ng POISSON for ca ses wi th a 1 arger numoer 

of poles where the leaDing term takes the form of 1/rn with n » 1. 



Polar Coordinates 

We differentiate the vector potential Ae with respect to axial synvne­

try axi s. 

A -e 

aAe = (cos 
aZ 

2 az. 

=. 

a . 
9 · - - Sln ar 

P 1 (co S 9) 
(11< 

1 
P +2 (cos 9) 

(11< 
etc. . .. 

Applying the rule to a solenoid with (11< = 2k - 1 we can simi I arly de­

velop groups of· them with high decay power· in their· leading terms. 

To differentiate the associated Legendre polynomials we make use of 

Eq. (8 .5.4) and (8. 5.3) i n the book of Abramowitz and Stegun (p. 334) to 

obtai n 

x = cos e· 



I 
El [] GJ 1 c:I @ 

-- .. - ---, 

9 0 0 Q [±] [~J 

symmetry anti symnetry symmetry 

1 1 (u ) 1 1 (u ) 1 1 (u ) 
7K PZk- 1 2k+l PZk 2Jc+2 PZJc+1 r r 

_ 1_ P 1 _1_ p 1 1 1 
2. 1 ' ... 3 Z. 4 P3 ' 

r r r 

Ex amo 1 e 

We· have calculated. the vector- potential f or a single current loop and 

compared the resu lt s with those from POISSON. 

We express t he vector potential of d sing le current loop placed at 

~ - 0 and p _ a-I as: 

+- m ) 
1. K - 2E. ] 

K, E are the elliptic integr-al of the first and seco nd k ind respectively. 

For I - lA we have so lved for the vector potenti a 1 usi ng POISSON and 

compared results for cases that use different boundary co nd itions. (Fig. 5) . 

@ 
.. 
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The V~c:tor Pot~ntia.l oj a. Single Loop 
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·1 
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Q 
0 1 1.5 2 2.5 3 3.5 1 
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The vector potential. alorg r at z = o. pf q single current loop carrYing 
111 su~jeqe<1 to various bounclary conclHlons. 


